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1. 

The modelling and control of flexible space structures is a topic of much current research.
Some examples are the NASA Remote Manipulator System (RMS) on the Space Shuttle
and appendages of satellites (e.g., solar panels). Typically, these structures are required to
slew about a fixed or hinged location and are subsequently made rigid and massive to
prohibit bending or torsion along any of their axes. In space-borne structures, size and
mass are a significant factor wherein a less massive structure results in a lighter, faster
mechanism and more economial operation and cost-effectiveness. The combination of low
mass and long lengths results in a highly flexible structure with low natural frequencies.

If the vibrations from a lightweight, flexible, slewing link are chaotic, then precise
prediction of the long term time history is impossible, while the near term history may be
quite good. Small uncertainties in the initial conditions lead to diverging responses. A
statistical measure of the chaotic dynamics can be obtained by using the probability density
functions [1]. Measurement of the density functions (probability, PDF, and cumulative,
CDF) can be used as a diagnostic tool especially in periodically forced systems.
Probabilistic theory is capable of distinguishing different degrees of complexity of motions,
and presents a further step in bridging the gap between simple systems and complicated
dynamics.

This note will focus on the physically relevant case of a flexible link (a simple model
of a robot manipulator arm) undergoing periodic slewing motion (as normally occurs in
repetitious tasks). The equations of motion take into account Coriolis and centripetal
forces as well as other non-linear terms. This system is known to undergo chaotic motion
for certain parameters (e.g., initial deflection and amplitude of the forcing function) [2].
The amplitude PDF and CDF for the position and velocity, P(y) and P(ẏ), of the system
will be used as an identification technique for chaos in a probabilistic setting. The system
is investigated for multi-maxima peaks typical of chaotic distributions. The chaotic
distributions of the model are compared to the standard normal distribution. both the
chi-squared and Kolmogorov–Smirnov goodness of fit tests are used.

2.   

The flexible, slewing link model consists of a beam with small moment of inertia attached
to an actuating motor with a large gear ratio, allowing little or no interaction between the
vibrations of the beam and the rotations of the motor (see Figure 1). The actuator is
isolated from the beam’s flexure and the actuator’s inertia can be considered to be
negligible. In a slewing manipulator, the inertial non-linearities are dominant over the
geometric non-linearities, especially if a payload is involved. The use of a rotating
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Figure 1. A schematic diagram of the rotating axis with an attached flexible link.

co-ordinate frame allows a simple expression for the total potential energy of the beam.
In the derivation, the following conditions for the beam are applied: (1) cross-sections are
assumed to remain plane and normal to the bending axis; (2) axial displacement, torsion,
shear and gravity effects are negligible.

Consider the system shown in Figure 1: the position of any point along the link in terms
of the inertial frame X–Y is given by r=(x cos u− y sin u)ı̂+(x sin u+ y cos u)j
 . The
magnitude of the velocity at any point on the link is obtained by taking the first time
derivative of the position and finding the square, ṙ2 = x2u� 2 +2xẏu� + y2u� 2 + ẏ2. In the
above, ı̂ and j
 are the unit vectors of the reference frame X and Y, respectively, u= u(t)
describes the hub angle between the rigid (non-flexible) link and the horizontal axis, and
y= y(x, t) describes the deviation of the link from the rigid case, where x is some value
between 0 and L, and L is the total length of the beam.

The kinetic and potential energies of the beam, respectively, are

T= 1
2 g

L

0

r(x2u� 2 +2xẏu� + y2u� 2 + y2) dx, V= 1
2 g

L

0

EI(y0)2 dx, (1)

where T is found by multiplying the magnitude of the velocity of each differential mass
element r dx and integrating over the entire length of the beam, r is the mass per unit
length, E is Young’s modulus for the beam, and I is the area moment of inertia of the
link.

Using Lagrange’s equation, applying Hamilton’s principle (taking the first variation)
and by repeated integration by parts, the dynamic equations of motion are derived. For
simplicity, the non-conservative work, Wnc , is assumed to be tu, where t is the applied
torque and u is the total angular deflection. The du terms describe the rigid body position
of the beam and the dy terms describe the flexure of the beam along its length. The
non-linearities result from Coriolis, centripetal acceleration and other non-linear terms:

du, g
L

0

r(x2u� + xÿ+ y2u� +2yẏu� ) dx− t=0; (2)

dy, g
L

0

[r(xu� − u� 2y+ ÿ)+EIy2] dx=0. (3)

The motion of the structure is now discretized by applying a modal summation
procedure. The deflection y(x, t) can be approximated by the expression,

y(x, t)= s
n

i=1

fi (x)qi (t),
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where the admissible basis functions (clamped–free) are defined by fi (x), and the time
dependent modal co-ordinates are defined by qi (t). By taking the case in which i=1, a
two mode model is obtained, sufficient to display the interactions between the rigid body
and the first bending mode during the slew of the structure.

By masking the following substitutions, where dij is the Kroneker delta function:

g
L

0

rx2u� dx= Ib ; g
L

0

rxfi (x) dx= Ii ; g
L

0

rfi (x)fj (x) dx=mi dij , (4)

and substituting y(x, t) into equation (2), the equation for the rigid body position can then
be represented by the non-linear equation

(Ib +m1q2
1 )u� + I1q̈1 +2m1q1q̇1u� + bvu� = t=A sin vft, (5)

where the linear damping term bvu� has been added to model the damping between the
slewing actuator and the flexible structure.

For the beam modes, substituting y(x, t) into equation (3), multiplying through by an
orthogonal eigenfunction, fj , integrating over the domain, and using the equivalence

g
L

0

EIf2i fj dx=g
L

0

EIf0i f0j dx=v2
i g

L

0

rfi (x)fj (x) dx (6)

yields

I1u� +m1q̈1 +2zv1q̇1 + (m1v
2
1 −m1u� 2)q1 =0, (7)

where the term 2zv1q̇1 has been added to model the internal damping of the structure.

3.  

The link was modelled as an 1 m×5·08 cm×0·1588 cm aluminum beam with a flexural
rigidity of 1·1686 Nm2. The model was evaluated using a Runge–Kutta fifth order method
controlling the time increment step size. The relative error tolerance was held at 1×10−8.
A small, realistic damping factor of z=0·2% critical was included to model energy
dissipation due to the internal damping of the system. The damping due to actuator–beam
interaction was also considered to be small, at bv =0·0001. The forcing frequency was
taken as 7·854.

The calculation of the amplitude probability distribution was performed as follows.
First, to avoid transient effects, the first 20 000 iterations of the simulation time history
were discarded. Second, the interval between the largest and smallest amplitudes of the
motion was divided equally into many sub-intervals. Third, the iteration from the
numerical integration was placed in the appropriate sub-interval. Fourth, the number of
iterations in each sub-interval was divided by the total number of iterations. The more
iterations the numerical integration has, the more accurate the distribution is. The CDF
was found by taking the sum of each of the previous intervals.

4.   

4.1. PDF development
Due to its sensitivity to the initial conditions, it is impossible to predict how a chaotic

system will develop. All that can be said is that the trajectory lies somewhere on the strange
attractor. The precise location of a particle in phase space cannot be known. To perform
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Figure 2. The position PDF of the evolution from periodic amplitude regions to chaos: (a) A=1·92;
(b) A=1·95; (c) A=2·06; (d) A=2·45.

a statistical analysis of the motion it is necessary to obtain the probability of finding the
particle at some point on the attractor. For an attractor there would be a corresponding
probability density function (PDF) for each of the phase space co-ordinates. The PDF of
a chaotic system with an attractor should also display a fractal nature, but may be hidden
by experimental or computational noise.

Figure 3. The position CDF of the evolution from periodic amplitude regions to chaos: (a) A=1·92;
(b) A=1·95; (c) A=2·06; (d) A=2·45.
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Figure 4. The velocity PDF of the evolution from periodic amplitude regions to chaos: (a) A=1·92;
(b) A=1·95; (c) A=2·06; (d) A=2·45.

The evolution of the position and velocity PDFs and CDFs can be seen in Figure 2–5.
The figures show the system as the forcing amplitude is increased from A=0·1 to 2·45.
For A=0·1 the typical PDF for the linear version of this system is seen. The PDF for
a periodic sequence is much different than that of a chaotic sequence. The distribution for
a periodic sequence is denoted by two discrete sharp peaks at the maxima and minima,

Figure 5. The velocity CDF of the evolution from periodic amplitude regions to chaos: (a) A=1·92;
(b) A=1·95; (c) A=2·06; (d) A=2·45.
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resulting from the elliptic nature of the limit cycle phase portrait. As the amplitude is
increased the system undergoes a bifurcation which occurs at A=1·92; the system is now
quasi-periodic. Increasing the amplitude results in more bifurcations until the system is
continuous in its chaotic state at A=2·45. The position PDF exhibits a continuous nature
and multi-maxima peaks as A increases. The velocity PDF tends towards a normal
distribution but also has multi-maxima peaks. These peaks are characteristic of chaotic
PDFs due to the fractal nature of the attractors.

4.2. Multi-maxima peaks
A chaotic system is most often described using phase portraits, correlation functions,

Poincaré mappings and Lyapunov exponents. The probability density function can also
be used as another criteria for a chaotic system. Unlike the PDFs of a harmonic response,
which are characterized by two discrete almost maxima at the extrema (see Figures 2 and
4, A=0·1), the PDFs of a chaotic response are typically characterized by a continuous
maxima diffused towards the center (see Figures 2 and 4, A=2·45) [4]. The multi-maxima
peaks arise because certain amplitudes of the time series are more probable than others.
This happens because, as the system is driven into its chaotic state, the strange attractor
which governs the system draws points in the phase plane to it. The attractor gives a global
picture of the long term behavior of the dynamical system. The PDF depends upon the
length of the time series from which it is estimated.

4.3. Sensitivity to initial conditions
A hallmark of chaotic dynamical systems is their sensitive dependence to initial

conditions. A chaotic system with two sets of almost identical initial conditions will diverge

Figure 6. A PDF comparison of three initial conditions: (a) position; (b) velocity. ——, 0·01; ·····, 0·1,
–·–·–, 1·0.
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Figure 7. The normal distributions compared to the chaotic distributions: (a) position PDF versus normal
PDF; (b) velocity PDF versus normal PDF; (c) position CDF versus normal CDF; (d) velocity CDF versus
normal CDF.

and take on totally different trajectories after some time t. The outcome of any
trial depends heavily on the starting parameters. The PDFs also show the system’s
sensitivity. The slewing model was evaluated at three initial end-tip displacements of
0·01, 0·1 and 1·0 with a forcing amplitude of 2·45. The position and velocity PDF results
of the three can be seen in Figure 6 (where only the top portion is shown for clarity). As
seen in the figure, the forms of the PDFs are similar (all are continuous and of the same
general form), but they are are not identical. The CDFs (not shown) do not display the
system sensitivity as readily, as expected, since they are the cumulative sum of the
components.

4.4. Comparison with normal distribution
A comparison of the PDFs and CDFs for position and velocity was made with the

normal distribution (Figure 7). A mean of 0·0044 and a standard deviation of 1·7148 were
calculated from the velocity–time series data. For the position–time series data, a mean
of 0·0086 and a standard deviation of 0·1297 were determined. The goodness of fit for the
distributions was measured by using the chi-square and Kolmogorov–Smirnov (K–S) tests
[6]. The x2 tests resulted in a value of 0·2138 for the position and a value of 0·05 for the
velocity PDF. This would indicate that the theoretical normal distribution is acceptable at
less than the 5% significance level. Thus, it would appear from this test alone that the
normal curve is a valid approximation for the system’s velocity distribution. The K–S test
was then performed on the system. A maximum difference of Dn =0·4472 was found for
the velocity distribution. For position, a maximum difference of Dn =0·4565 was found.
The critical value of Da

n for the distributions was calculated to be 0·128 at the 20%
acceptance level. Thus, the PDFs of the system fail the K–S test in comparison to the
normal distribution for anything less than 20% significance.
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5. 

This investigation dealt with the identification of the characteristics of the PDF and
CDF of a flexible, slewing link (as a model of a lightweight robot manipulator) as it
developed from the linear region to the chaotic region. Several conclusions can be reached.
As the forcing amplitude is varied, chaotic motion appears. The existence of periodic,
quasi-periodic and chaotic distributions has been shown. The probability density function
has distinctive features depending upon whether the system is undergoing linear or chaotic
motion. The PDF of the system displays the chaoticity, while the CDF is not as good a
measure. The normal distribution does not provide an adequate model of the chaotic PDF
and CDF of the system as verified using the chi-square and Kolmogorov–Smirnov tests.
Since the trend is to make manipulators lighter and quicker to enhance performance, care
must be taken when selecting the forcing methods. The system modelled shows that chaotic
motions can occur for these types of lightly damped, flexible manipulators.
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